
Some semi-classical issues in the boundary sine-Gordon model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 5471

(http://iopscience.iop.org/0305-4470/35/26/309)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 5471–5488 PII: S0305-4470(02)34179-9

Some semi-classical issues in the boundary
sine-Gordon model

M Kormos and L Palla

Institute for Theoretical Physics, Roland Eötvös University, H-1117 Budapest, Pázmány sétány
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Abstract
The semi-classical quantization of the two lowest energy static solutions of the
boundary sine-Gordon model is considered. A relation between the Lagrangian
and bootstrap parameters is established by comparing their quantum corrected
energy difference and the exact one. This relation is also confirmed by studying
the semi-classical limit of soliton reflections on the boundary.

PACS numbers: 03.70.+k, 03.65.Sq, 11.10.Kk, 64.60.Fr

1. Introduction

The sine-Gordon model is one of the most extensively studied quantum field theories. The
interest stems partly from the wide range of applications that extend from particle physics
to condensed matter systems and partly from the fact that many of the interesting physical
quantities can be computed exactly due to its integrability. All these properties are inherited
by the boundary sine-Gordon model (BSG) obtained by restricting the ordinary one to the
negative half line by imposing appropriate, integrability preserving, boundary conditions at
x = 0 [1, 2].

The novel feature of the BSG is the complicated spectrum of boundary bound states
manifesting themselves as appropriate poles in the various reflection amplitudes [2–6]. These
exact amplitudes are obtained by solving the boundary versions of the Yang–Baxter, unitarity
and crossing equations [2] in the bootstrap program [3–6]. Therefore, in the general case the
reflection factors and the spectrum of bound states depend on two ‘bootstrap’ or ‘infrared’
parameters that characterize the solutions of these equations. These parameters should be
determined somehow by the two ‘ultraviolet’ or ‘Lagrangian’ boundary parameters appearing
in the boundary potential enforcing the boundary condition. This question leads then to the
problem of establishing a relation between the exact algebraic solution of the quantum theory
and the classical Lagrangian. A semi-classical quantization of the classical theory may provide
the necessary link.
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The quest for the relation connecting the two sets of parameters (also called UV–IR relation
below) has a long history. For Dirichlet boundary conditions, when only one bootstrap and one
Lagrangian parameter survive, it was already obtained in [2]. A general expression was given
by Zamolodchikov[7] obtained by describing the BSG model as a bulk and boundary perturbed
conformal field theory (CFT), but unfortunately these results remained unpublished. Recently
some heuristic arguments were presented for a possible general form of the UV–IR relation in
[6] by comparing the parameter dependences of some patterns (such as global symmetries and
ground state sequences) in the bootstrap solution and in the classical theory. While this general
form is consistent with Zamolodchikov’s solution, it leaves the coupling constant dependence
of a crucial coefficient undetermined. A TCSA study of the spectrum of the BSG in finite
volume [8] confirmed that Zamolodchikov’s constant has the correct β dependence. In contrast
in the boundary sinh-Gordon model, Corrigan and Taormina derived the relation between the
parameters of the classical Lagrangian and typical IR quantities by comparing the WKB and
bootstrap spectra of breathers [9]. It turns out after analytically continuing this relation to
the sine-Gordon model that its general form is the expected one, but its coefficient depends
on β in a different way. This difference may reflect different specifications of the boundary
sine–(sinh)-Gordon models considered in [6, 7, 9].

Motivated by the above we consider in this paper two problems in the boundary sine-
Gordon model, where the semi-classical approximation can be determined starting from the
classical Lagrangian, and the results can be compared to the appropriate limits of the exact
solution. We choose these problems to involve in one way or another the solitons in BSG, as
they have no analogues in sinh-Gordon theory, thus the results cannot be obtained or predicted
by a simple analytic continuation. Since this framework is much closer to that of [9] than to
the one in [6, 7] the results presented may confirm the findings of Corrigan and Taormina but
have less to say about the relation derived by Zamolodchikov.

The first problem we investigate is the semi-classically corrected energy difference of
the two lowest energy static solutions in the boundary sine-Gordon model. These classical
solutions are in fact given by a static bulk soliton/antisoliton ‘standing at the right place’ [6, 10],
thus their semi-classical quantization amounts to the adaptation of the soliton quantization [11]
to the boundary problem. On the other hand these solutions may be thought of as the classical
analogues of the exact ground state |〉, and the first excited boundary state |0〉 respectively [6],
thus the semi-classically corrected energy difference should be compared to the limit of these
two exact energies. This leads then to a relation between the Lagrangian and the bootstrap
parameters.

The second problem we investigate is the semi-classical soliton reflection on the boundary
at x = 0. The idea to compare the semi-classical phase shift of this process—obtained from
the classical time delay—and the limit of the exact amplitude coming from the algebraic
solution was suggested by Saleur et al [10]. Although they determined the classical time delay
in the general case (for ground state boundary at least), they made the comparison for Dirichlet
boundary conditions only. Here we show that the comparison in the general case leads to the
same UV–IR relation we obtained from the first problem.

The paper is organized as follows: the semi-classical quantization of the static solutions
is carried out in section 2. The results are compared to the limit of the exact solution in
section 3. Section 4 is reserved for the investigation of the soliton reflection and we make our
conclusions in section 5.

2. Semi-classical quantization of the static solutions

In this section we carry out the semi-classical quantization of two static solutions in the
boundary sine-Gordon model and compute the semi-classical quantum correction to the
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difference between their classical energies. We start by summarizing some known facts
about this theory and the classical solutions in question.

The boundary version of the sine-Gordon model is defined by the action [2]

S =
∫ ∞

−∞
dt

∫ 0

−∞
dx LSG −

∫ ∞

−∞
dt VB(�B) LSG = 1

2
(∂µ�)2 − m2

β2
(1 − cos(β�))

(2.1)

where �(x, t) is a scalar field, β is a real dimensionless coupling and �B(t) = �(x, t)|x=0.
To preserve the integrability of the bulk theory the boundary potential is chosen as

VB(�B) = M0

(
1 − cos

(
β

2
(�B − φ0)

))
where M0 and φ0 are free parameters. As a result the scalar field satisfies the boundary
condition

∂x�|x=0 = −M0
β

2
sin

(
β

2
(�B − φ0)

)
. (2.2)

Collecting all the possible equivalences between the boundary parameters their fundamental
domain turns out to be [5, 6]

0 � M0 � ∞ 0 � φ0 � π

β
.

In the classical theory the two static solutions with lowest energy are given by a static
bulk soliton/antisoliton ‘standing at the right place’ [6, 10], i.e. by choosing � ≡ �s(x, a+)

or � ≡ �s̄(x, a−) for x � 0, where

�s(x, a+) = 4

β
arctan

(
em(x−a+)

)
�s̄(x, a−) = 2π

β
− �s(x, a−)

and a± are determined by the boundary condition (2.2):

sinh(ma±) =
4m

M0β2 ± cos
(

β

2 φ0

)
sin
(

β

2 φ0

) .

(a+ and a− are obtained from each other by φ0 ↔ 2π
β

− φ0). The energies of these two
solutions can be written as

Es(M0, φ0) ≡ Ebulk + VB = 4m

β2
+ M0 − M0R(+)

(2.3)

Es̄(M0, φ0) = 4m

β2
+ M0 − M0R(−) = Es

(
M0,

2π

β
− φ0

)
where we introduced

R(±) = [1 ± 2A cos(α) + A2]1/2 A = 4m

M0β2
α = β

2
φ0.

The difference between these two energies, which is called below the ‘classical energy
difference’,

�Ecl ≡ Es̄(M0, φ0) − Es(M0, φ0) = M0(R(+) − R(−))

is positive for α ∈ [0, π
2

)
,M0 > 0 showing that in this range the soliton generates the ground

state and the antisoliton the first excited one. From equation (2.3) it follows that for φ0 → 0+

(see footnote 1)
1 This limit is not smooth, see our remark later.
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Es = 0 Es̄ =
{

2M0 M0 < 4m
β2

8m
β2 M0 > 4m

β2

. (2.4)

In the process of semi-classical quantization the oscillators associated with the linearized
fluctuations around the static solutions �(x, t) = �s,s̄ + eiωtξ±(x) are quantized [11]. The
equations of motion of these fluctuations can be written as[

− d2

dx2
+ m2 − 2m2

cosh2(m[x − a±])

]
ξ±(x) = ω2ξ±(x) x < 0 (2.5)

and ξ±(x) must also satisfy the linearized version of the boundary condition (2.2):

ξ ′
±(x)|x=0 = −M0β

2

4

1 ± A cos α

R(±)
ξ±(0). (2.6)

These eigenvalue problems can be solved exactly by mapping equation (2.5) to a
hypergeometric differential equation [12].

2.1. Discrete spectrum

In case of the discrete spectrum it is convenient to write ω2 = m2(1 − ε2). The normalizable
solutions of equation (2.5) must vanish at x → −∞, and assuming ε to be positive, they are
given by

ξ±(x) = N emε(x−a±)(ε − tanh[m(x − a±)]).

The boundary conditions, equation (2.6), determine the possible values of ε as

ε2 + ε
R(±)

A
± cos α

A
= 0.

It is easy to show that for the solitonic ground state there is no positive solution of this equation,
while for the antisolitonic ‘excited’ state one of the roots, namely,

ε = R(+) − R(−)

2A
(2.7)

is positive. In fact a simple (numerical) study shows that for all positive A and α ∈ [0, π
2

)
0 � R(+) − R(−)

2A
� 1 and

R(+) − R(−)

2A
= 1 iff α = 0 and A < 1.

In the framework of semi-classical quantization these findings imply that there are no boundary
bound states for the ground state, described by �s , while for the state, described by �s̄ , there
is such a boundary bound state. The semi-classical energy of this bound state,

ω0 = m

√
1 −

(
R(+) − R(−)

2A

)2

(2.8)

is real, ω0 � 0, and it vanishes only for α = 0 and A < 1. In contrast to the traditional zero
modes this vanishing ω0 has nothing to do with �s̄ , not being invariant under a continuous
symmetry of the Lagrangian, and it indicates some sort of instability of the state described by
�s̄ . Indeed with these α and A values (2.4) gives an energy difference which is precisely the
mass of the bulk soliton, and since topological charge is not conserved in the boundary theory,
the higher energy state can decay into the lower one by emitting a standing soliton.

At this point it is worth comparing the stability analysis of this α → 0 situation and that
when α = 0 is set from the start, to emphasize the non-smooth nature of the limit. In the latter
case the two classical solutions become �1 ≡ 2π

β
and �2 ≡ 0. Repeating the stability analysis
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reveals that there are no normalizable bound state solutions of the fluctuation equations for
the ground state, �2, while for the ‘excited’ state, �1, there is a normalizable solution with
ω2 = m2(1 −A−2). When A > 1 this solution signals the existence of a boundary state, while
for A < 1, when this ω2 becomes negative, it indicates the instability of �1. The instabilities
found both in the α → 0 and in the α ≡ 0 cases are consistent with the results of the bootstrap
solution [5, 6] showing no excited boundary states in this range of parameters.

2.2. Continuous spectrum

In case of the continuous spectrum it is convenient to put ω2 = m2 + q2 (with q � 0). Then
the solutions of equation (2.5), which asymptotically become plane waves, can be written as

ξ±(x) = Ã± e−iq(x−a±) iq + m tanh(m[x − a±])

iq + m
+ B̃± eiq(x−a±) iq − m tanh(m[x − a±])

iq − m
.

The ratio Ã±/B̃± is determined by the boundary condition (2.6) at x = 0. Using this value
the asymptotic (x → −∞) form of the fluctuations can be written as

ξ±(x) → C±
(
eixq + e−ixq eiδ±(q)

)
where the classical reflection factor is

eiδ±(q) = m − iq

m + iq

±A−1 cos α − q2

m2 + i q

m

R(±)

A

∓A−1 cos α + q2

m2 + i q

m

R(±)

A

. (2.9)

To handle the infinite volume limit it is convenient to confine the fluctuations to a box of size L
(i.e. to limit x to the section (−L, 0)) and impose Neumann boundary conditions at x = −L:
ξ ′(−L) = 0. This condition then determines the possible values of the momenta:

q±
n 2L + δ±(q±

n ) = 2nπ n integer. (2.10)

The semi-classical correction to the classical energy difference, �Ecl, is given by the
difference between the sums of the zero point energies of the fluctuations around �s̄ and �s :

�Esemi = �Ecl + �Ecor = �Ecl +
ω0

2
+

1

2

∑
n

(√
m2 + (q−

n )2 −
√

m2 + (q+
n )2
)
.

Replacing, as usual, the sum over n by an appropriate integral in the L → ∞ limit, exploiting
the

q−
n = q+

n +
δ+ − δ−

2L

consequence of equation (2.10), and dropping all terms vanishing for L → ∞ gives

�Esemi = �Ecl +
ω0

2
− M0β

2

8π
(R(+) − R(−)) +

1

2π

[m

A
(R(−) − R(+))I1

− m cos α

A2
(R(+) + R(−))I2

]
(2.11)

where

I1 =
∫ ∞

0
dy

y2
√

1 + y2

D
I2 =

∫ ∞

0
dy

√
1 + y2

D

D = y4 + (1 + A−2)y2 + A−2 cos2 α.
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2.3. Renormalization

The first integral in equation (2.11) is logarithmically divergent, showing the need of
regularization and renormalization. This is hardly surprising since neither the bulk nor the
boundary potentials are normal ordered, and already in the classic paper [13] it is shown, on
the example of the bulk soliton’s mass correction, that this naive procedure leads to logarithmic
divergences even in mass differences. The proper way to deal with these infinities [11, 13]
is to use the counterterms that account for the difference between the normal ordered and
non-ordered potentials.

In the boundary sine-Gordon model we use the same counterterm for the bulk potential
as in the bulk theory:

Vcount[�] = −δm2

β2

∫ 0

−∞
dx (1 − cos(β�)) δm2 = −m2β2

4π

∫ �

0

dk√
k2 + m2

but the integral is over the x � 0 half space only. The argument for this choice is based on
its local nature: as such it should be independent of the presence of the boundary. For the
boundary potential we assume that its counterterm has an analogous form

VB count[�] = −δM0

(
1 − cos

(
β

2
(�B − φ0)

))
with δM0 being some parameter. The total contribution of counterterms to the energy difference

CT = Vcount[�s̄] + VB count[�s̄] − Vcount[�s] − VB count[�s]

may remove the logarithmic divergence in equation (2.11), if it is proportional to R(+)−R(−).
This condition determines δM0:

δM0 = −M0β
2

4 · 2π

∫ �

0

dk√
k2 + m2

and with this choice CT becomes

CT = m

2πA
(R(+) − R(−))

∫ �/m

0

dy√
y2 + 1

.

Since the overall magnitude of CT is fixed by δm2 there are no more free parameters. Thus
the fact that adding CT to �Esemi does remove the divergence gives a partial justification of
the renormalization procedure used2. In the renormalized energy difference

�Eren
semi = �Esemi + CT

only the term containing I1 gets modified and is replaced by
m

2Aπ
(R(−) − R(+)) I1 → m

2A3π
(R(+) − R(−)) Ĩ 1

with

Ĩ 1 =
∫ ∞

0

dy√
1 + y2

y2 + cos2 α

D
.

The convergent integrals Ĩ 1 and I2 can be computed symbolically with the aid of Maple. For
this it is helpful to write D = (y2 + a)(y2 + b) with

a =
(

R(+) + R(−)

2A

)2

� 1 b =
(

R(+) − R(−)

2A

)2

0 � b � 1

2 By setting up a systematic perturbation theory in the boundary sine-Gordon model treating simultaneously both
the bulk and the boundary interactions one can confirm the correctness of both δm2 and δM0 [14].
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and give Maple the range of these parameters. Using the explicit form of these integrals, after
some algebra, the renormalized energy difference is obtained as

�Eren
semi = M0(R(+) − R(−)) +

m

2

√
1 −

(
R(+) − R(−)

2A

)2

− M0β
2

8π
(R(+) − R(−))

− m

π

√
1 −

(
R(+) − R(−)

2A

)2

arccos

(
R(+) − R(−)

2A

)
. (2.12)

It is a remarkable feature of this expression that it depends only on the difference
(R(+) − R(−))/(2A).

3. Comparison to the exact results

In this section the main results of the previous semi-classical quantization, namely the
(non)existence of semi-classical bound states, the classical reflection factors and the semi-
classically corrected energy difference are compared to the results obtained from the exact
(bootstrap) solution.

In this process the sine-Gordon field is assumed to correspond to the semi-classical limit
of the first breather, while the exact ground state | 〉 and the first excited boundary state |0〉
are identified as the quantum analogues of the classical states (solutions) �s , �s̄ . This latter
identification was suggested in [6] on the basis of the existence of a (Z2 reflection type)
transformation that changes the roles of these two states in the same way as the classical
� ↔ 2π

β
− �, φ0 ↔ 2π

β
− φ0 changes �s and �s̄ into each other.

In the exact solution of the boundary sine-Gordon model [2, 4–6] the coupling constant
β appears through

λ = 8π

β2
− 1

while the dependence on the boundary condition appears in the form of two real parameters,
η and ϑ , the fundamental ranges of which are [6]

0 � η � π

2
(λ + 1) 0 � ϑ � ∞.

Boundary bound states appear in the exact solution as poles in the various reflection amplitudes
at purely imaginary rapidity u = −iθ . The location of these poles depends on the η parameter
only and is given by appropriate combinations of

νn = η

λ
− (2n + 1)

π

2λ
wk = η̄

λ
− (2k + 1)

π

2λ
η̄ = π(λ + 1) − η.

Though the semi-classical quantization is non-perturbative, its validity is restricted to weak
coupling [11], which in our case means to β → 0. Therefore, it is the λ → ∞ limit of the
exact solution that should be compared to the semi-classical results. The η parameter should
be scaled to obtain a non-trivial spectrum in this limit, and we propose to write

η = c
π

2
(λ + 1) 0 � c � 1

and keep c fixed.



5478 M Kormos and L Palla

3.1. Boundary states

The reflection factor of the first breather, B1, on the ground state boundary is given by [4]

R(1)(θ) =
(

1
2

) (
1

2λ
+ 1
)

(
1

2λ
+ 3

2

)
(

η

πλ
− 1

2

) (
iϑ
πλ

− 1
2

)
(

η

πλ
+ 1

2

) (
iϑ
πλ

+ 1
2

) (x) = sinh
(

θ
2 + iπx

2

)
sinh

(
θ
2 − iπx

2

) (3.1)

(θ is the rapidity of B1). B1’s reflection factor on |0〉, R(1)
|0〉 (θ), is obtained from this expression

by the substitution η → η̄ = π(λ + 1) − η [6] (see also [5]). The only pole of R(1)(θ) which
may describe a boundary state is at

η

λ
− π

2
= 1

2
(ν0 − w1).

This corresponds to a bound state if it is in the physical strip, i.e. if 0 � 1
2 (ν0 − w1) � π

2 . In
the semi-classical (λ → ∞) limit, keeping c fixed,

1

2
(ν0 − w1) = (c − 1)

π

2
+

cπ

2λ
∼ (c − 1)

π

2

and since this is negative we conclude that B1 cannot create a bound state on | 〉. On the other
hand, R(1)

|0〉 (θ) has a pole at

π

λ
− η

λ
+

π

2
= 1

2
(w0 − ν1)

which may describe a bound state if it is in the physical strip. Since in the semi-classical limit

1

2
(w0 − ν1) = (1 − c)

π

2
+

(2 − c)π

2λ
∼ (1 − c)

π

2

is in the physical strip we conclude that B1 can create a bound state (in fact it is the state
|1〉) when reflecting on |0〉. Recalling that semi-classically B1 should correspond to the sine-
Gordon field, we see that these findings fit nicely with the semi-classical results and strengthen
the association (�s,�s̄) ↔ (|〉, |0〉).

The energy of this bound state above E|0〉 is determined by the location of the pole

E − E|0〉 = m1 cos

(
(1 − c)

π

2
+

(2 − c)π

2λ

)
(3.2)

where m1 = 2M sin
(

π
2λ

)
is the mass of the B1 and M is the soliton mass. Using the semi-

classical expression M = 8m
β2

(
1 − β2

8π

)
one finds from (3.2) for λ → ∞ (β → 0)

E − E|0〉 ∼ m sin
(cπ

2

)
.

Identifying this limiting energy difference with the energy of the semi-classical bound state
ω0, equation (2.8), determines the (limiting value of the) ‘infrared’ (bootstrap) parameter η in
terms of the ‘ultraviolet’ (Lagrangian) M0 and φ0:

sin
(cπ

2

)
=
√

1 −
(

R(+) − R(−)

2A

)2

. (3.3)

3.2. The limit of the reflection factors

The next step is to establish a relation between the (semi-)classical limits of R(1)(θ) and
R

(1)
|0〉 (θ), and the classical reflection factors eiδ±(q). Since the exact quantum reflection factors,
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equation (3.1), depend also on the ϑ parameter, for a non-trivial limit we have to scale also
this parameter. In analogy with the η parameter we propose to write

ϑ = ϑcl(λ + 1) 0 � ϑcl � ∞.

This way, keeping only the leading constant terms in the λ → ∞ limit, one obtains

R(1)(θ) → i sinh θ − 1

i sinh θ + 1

cos
(

cπ
2

)
cosh ϑcl − sinh2 θ + i sinh θ

(
cos

(
cπ
2

)
+ cosh ϑcl

)
cos

(
cπ
2

)
cosh ϑcl − sinh2 θ − i sinh θ

(
cos

(
cπ
2

)
+ cosh ϑcl

) . (3.4)

The expression for the limiting value of R
(1)
|0〉 (θ) is obtained by making the substitution

c → c̄ = 2−c (which amounts to changing the sign of cos( cπ
2 )) in equation (3.4). Identifying

these limiting R(1)(θ) and R
(1)
|0〉 (θ) with eiδ±(q), equation (2.9), using sinh θ = q

m
, determines

the bootstrap parameters cπ
2 and ϑcl as

cos
(cπ

2

)
+ cosh ϑcl = R(+)

A
cosh ϑcl − cos

(cπ

2

)
= R(−)

A
(3.5)

together with

cos
(cπ

2

)
cosh ϑcl = cos α

A
. (3.6)

The algebraic solution of equation (3.5)

cos
(cπ

2

)
= R(+) − R(−)

2A
cosh ϑcl = R(+) + R(−)

2A
(3.7)

satisfies equation (3.6) and is also consistent with equation (3.3).

3.3. The limit of E|0〉 − E| 〉 and the UV–IR relation

According to the bootstrap solution [5, 6] the energy difference between the lowest excited
boundary state and the ground state is given by

�Ebst ≡ E|0〉 − E| 〉 = M cos ν0 = M cos
(η

λ
− π

2λ

)
where M is the soliton mass. In the semi-classical limit, using the appropriately scaled η

parameter, this can be written as

�Ebst = M cos
(cπ

2

)
− M sin

(cπ

2

) β2

8π

(cπ

2
− π

2

)
+ MO(β4). (3.8)

Now it is easy to show, using the complete semi-classical expression M = 8m
β2

(
1 − β2

8π

)
in

the first term, the leading M = 8m
β2 in the (higher order) second one, together with the actual

value of cos
(

cπ
2

)
in (3.7), that the first four terms of �Ebst coincide term by term with the

expression of �Eren
semi in equation (2.12).

Now we can understand the importance of the fact that in spite of the intermediate stages
the dependence on (R(+)+R(−))/(2A) cancels in the final form of the semi-classical �Eren

semi.
This should happen since �Ebst, just as the whole spectrum of boundary states predicted by the
bootstrap solution, is also independent of ϑ , thus in the semi-classical limit it should depend
only on cπ

2 but should be independent of ϑcl.
The nice matching between �Eren

semi and �Ebst confirms the relation between the bootstrap
and Lagrangian parameters (equation (3.7)). This relation makes it possible to determine the
(semi-classical limit of the) only free parameter in the so-called UV–IR relation.
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In [6] it is discussed that a relation between the bootstrap and Lagrangian parameters of
the boundary sine-Gordon model (‘UV–IR relation’) of the form

cos
( η

λ + 1

)
cosh

(
ϑ

λ + 1

)
= M0

Mcrit
cos α sin

( η

λ + 1

)
sinh

(
ϑ

λ + 1

)
= M0

Mcrit
sin α

(3.9)

where the parameter Mcrit (M0/Mcrit) may depend on β, is compatible with the symmetry
properties of the bootstrap solution and the classical Lagrangian. Our aim is to say something
on this parameter and on this dependence. First of all, η

λ+1 and ϑ
λ+1 are nothing but cπ/2 and

ϑcl in the way they were introduced, thus equation (3.9) determines in fact these parameters
for all values of λ. Making this identification explicit in equation (3.9) and comparing to
equation (3.6) gives, in the semi-classical limit,

M0

Mcrit
= 1

A
i.e. Mcrit = 4m

β2
. (3.10)

Note that this is the same value as the classical one appearing in equation (2.4).
There are several points that should be stressed about Mcrit in general and its actual value

in particular. The first point to mention is that M0/Mcrit appearing in equation (3.9) may
depend on the regularization scheme used to define the quantum theory and the value in (3.10)
is in the ‘semi-classical scheme’. In a recent paper Corrigan and Taormina obtained the
UV–IR relation in the sinh-Gordon model by semi-classically quantizing the (periodic)
boundary breathers [9]. Analytically continuing their results in β (and accounting for the
differences between the parameters) one can show that their Mcrit is identical to equation (3.10).
In this respect it is worth emphasizing that the analogues of the static solutions �s and �s̄ , just
like the states | 〉 and |0〉 upon which our investigation is based, are absent in the sinh-Gordon
theory, thus the results of this paper give an independent confirmation of the Mcrit obtained
in [9].

In [9] it is conjectured that this result for Mcrit may be exact. To support this conjecture
we note that our results make it possible to check that Mcrit receives no O(β0) correction:

Mcrit = 4m

β2
(1 + O(β4)).

To show this we denote the (β-dependent) M0/Mcrit as H and determine cos
(

cπ
2

)
from

equation (3.9)

cos
(cπ

2

)
= H

2
(
√

1 + H−2 + 2H−1 cos α −
√

1 + H−2 − 2H−1 cos α)

and finally write H = 1
A

(
1 + δH

β2

8π

)
. Now plugging this expression for cos

(
cπ
2

)
(and the

equivalent one for cπ/2) into (3.8) reveals that the only choice that guarantees the agreement
between equation (3.8) and equation (2.12) is δH = 0.3

Perturbed conformal field theory is another useful scheme to describe the boundary sine-
Gordon model. In this description the BSG is viewed as a c = 1 boundary CFT perturbed by
the (relevant) vertex operators constituting the bulk and boundary potentials [17]:

S = Sc=1 +
µ

2

∫ ∞

−∞
dt

∫ 0

−∞
dx(Vβ[�] + V−β[�]) +

µ̃

2

∫ ∞

−∞
dt
(
�β/2[�] e−iα + �−β/2[�] eiα)

(3.11)

where

Vβ[�] = n(z, z̄) : eiβ�(x,t) : �β/2[�] = : ei β

2 �(0,t) :
3 Since the MO(β4) terms are not calculated we cannot say anything about the higher order corrections.
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and n(z, z̄) denotes the appropriate normal ordering function. The µ and µ̃ parameters play
the role of m and M0 respectively and have non-trivial dimensions:

[µ] = mass2− β2

4π [µ̃] = mass1− β2

8π .

The relation between µ and the soliton mass M is known from a TBA study of the bulk
sine-Gordon model [15]

µ = κ(β)M2−2� κ(β) = 2�(�)

π�(1 − �)

(√
π�

(
1

2−2�

)
2�
(

�
2−2�

)
)2−2�

� = β2

8π
. (3.12)

In this scheme the relation connecting η, ϑ and the parameters of the pCFT action,
equation (3.11), takes the form of equation (3.9) with the replacement

M0

Mcrit
→ µ̃

µcrit
µcrit =

√
2µ

sin β2

8

. (3.13)

This relation was obtained by Zamolodchikov [7] and has recently been verified by a TCSA
study of the spectrum of the boundary sine-Gordon model [8].

Thus the β dependence of the constant on the right-hand side of equation (3.9) is different
in the semi-classical and in the perturbed CFT schemes, reflecting the different specifications
of BSG. Nevertheless in the semi-classical limit the two results coincide. In the perturbed
CFT scheme the limiting values of cπ/2 and ϑcl should be obtained from equation (3.9) with
µ̃

µ
= H . Furthermore, for the comparison, the µ, µ̃ and the m, M0 parameters of the two

schemes should be related to each other. Using the semi-classical expression for M in the
β → 0 limit of equation (3.12) gives µ → m2

β2 and matching the leading (classical) term of

equation (3.8) to the scheme independent of �Ecl fixes µ̃ → M0; thus µcrit → 4m
β2 = Mcrit

indeed. Nevertheless, since our framework is much closer to that of [9] the results presented are
related to this work but have less to say about the UV–IR relation derived by Zamolodchikov.

4. Semi-classical soliton reflections

In this section the semi-classical limits of soliton/antisoliton reflection amplitudes on the
boundary at x = 0 are studied. The relevant classical solutions are time dependent—as
opposed to the static ones considered in section 2—but just like the static ones are specific
to sine-Gordon and have no analogues in sinh-Gordon theory. A long time ago a completely
general expression for the semi-classical phase shift was given in terms of the classical time
delay and of the number of semi-classical bound states by Jackiw and Woo [16]. The idea
to compare in the boundary sine-Gordon model this expression and the semi-classical limit
of the exact reflection amplitudes (obtained from the bootstrap) as a consistency check and
to gain information on the relation between the Lagrangian and the bootstrap parameters was
put forward by Saleur, Skorik and Warner (SSW) in [10]. SSW determined the classical time
delay in the case of soliton/antisoliton reflections on the ground state boundary for the general
boundary conditions, but only for Dirichlet boundary conditions made the comparison with
the exact results. In this section the comparison is made in the case of ground state boundaries
with general boundary conditions and also for the lowest excited boundary in the case of the
Neumann boundary condition.
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4.1. Neumann boundary condition

The expression given in [16] for the semi-classical phase shift eiδ(E) is

δ(E) = nBπ +
∫ E

Eth

dE′�t(E′) (4.1)

where nB is the number of (semi-classical) bound states and �t(E′) is the classical time delay.
As an illustration consider the (anti)solitons reflecting on a ground state Neumann boundary,
i.e. when ∂x�|x=0 = 0 (corresponding to M0 = 0).4 Then there are classical solutions only
for solitons reflecting as antisolitons (and vice versa) but not for solitons reflecting as solitons.
Furthermore, the classical solution describing an asymptotic soliton with velocity v heading
to and reflecting from the boundary at x = 0 can be obtained by restricting to the x � 0 half
line, a special solution of the bulk theory, that describes a soliton with velocity v scattering
on an antisoliton with velocity −v [10, 17]. Therefore, the classical time delay of the soliton
reflecting on the Neumann boundary is identical to the time delay in the soliton/antisoliton
scattering in the bulk theory:

�t = 2 ln v

mγ v
γ = 1√

1 − v2
.

The number of bound states, i.e. the number of boundary breathers with Neumann boundary
condition, was obtained in [17] by semi-classically quantizing the classical boundary breathers
with the result that nB = [

λ
2

]
. In the semi-classical limit λ → ∞ thus nB ∼ λ

2 = 4π
β2 . Since

the energy of the reflecting soliton is E = M√
1−v2 = M cosh(θ) = 8m

β2
√

1−v2 , equation (4.1)

yields in this case

δ(E) = 4π2

β2
+

16

β2

∫ tanh θ

0
dv′ ln v′

1 − v′2 .

In the exact solution of the BSG with Neumann boundary condition there are two amplitudes
that describe the reflections of solitons and antisolitons on the ground state boundary: P(θ)

describes the ‘diagonal’ scattering, i.e. when solitons reflect as solitons and antisolitons as
antisolitons, while Q(θ) describes the ‘non-diagonal’ scattering, when solitons reflect as
antisolitons (and vice versa). In [17] simple integral representations were given for them:

P(θ) = sin
(

λπ
2

)
sin
(

λπ
2 + iλθ

) e−iI (λ,θ) Q(θ) = −i
sinh(λθ)

sin
(

λπ
2 + iλθ

) e−iI (λ,θ)

I (λ, θ) =
∫ ∞

0

dt

t
t sin

(
2θt

π

)[
2 sinh

(
3t
2

)
sinh

(
λ−1
2λ

t
)

sinh
(

t
2λ

)
sinh(2t)

+
sinh(t/λ) − sinh(t)

cosh(t) sinh(t/λ)

]
.

In the semi-classical limit P(θ) ∼ e−λθe−iI (λ,θ) → 0, which is consistent with the absence of
diagonal classical reflection. On the other hand,

Q → ei λπ
2 e−iI1(λ,θ) I1(λ, θ) = lim

λ→∞
I (λ, θ) = λ

∫ ∞

0

dt

t2
sin

(
2θt

π

)
tanh

(
t

2

)
+ O(λ0)

(4.2)

where we neglected all O(λ0) terms in the exponents. The integral ∂θI1 by Gradstein and
Ryzhikh can be found in [19], thus

I1 = −2λ

π

∫ θ

0
dv ln tanh v = −2λ

π

∫ tanh θ

0
dv′ ln v′

1 − v′2 .

4 Since the vanishing M0 makes α a redundant parameter, and the bootstrap parameters take fixed values (η becomes
the maximally allowed π

2 (λ + 1) and ϑ vanishes) this illustration may serve only as a consistency check.
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Using finally the semi-classical relation λ ∼ 8π
β2 in equation (4.2) reproduces the semi-classical

phase shift indeed.

4.1.1. Excited Neumann boundary. The exact soliton/antisoliton reflection amplitudes are
known also when the Neumann boundary is in its excited states |n〉 n = 1, . . . ,

[
λ
2

]
.5 The

P, Q reflection factors on the lowest excited state |1〉 change as [17]

P → P̃ = P(θ)B(λ, θ) Q → Q̃ = Q(θ)B(λ, θ)

B(λ, θ) = tan

[
u

2
+

π

2

(
1

λ
+

1

2

)]
tan

[
u

2
− π

2

(
1

λ
− 1

2

)]
tan2

(u

2
+

π

4

)
u = −iθ.

In the semi-classical limit

lim
λ→∞

B(λ, θ) = 1 − i sinh θ

1 + i sinh θ
tan2

(−iθ

2
+

π

4

)

which gives only an O(λ0) correction in the exponent of Q̃. Thus the leading term in the
exponent, i.e. the semi-classical phase shift, is identical to what was found for the ground state
boundary.

With the Neumann boundary condition the state |1〉 may be thought of classically as a
(classical) breather bound to the boundary at x = 0 [17]. Thus the classical reflection process
may be described as a soliton/antisoliton pair reflecting on the breather at x = 0, and the
classical time delay should be obtained from this picture. The relevant classical solution is
constructed by the τ function method [10, 18] in two steps. First a 4-soliton solution describing
two pairs of solitons and antisolitons is determined and the relevant time delays are obtained.
Then we continue the parameters of one of the pairs to purely imaginary values to describe
the breather and make the necessary changes in the expression of the time delay.

In the τ function method each soliton and antisoliton is characterized by its velocity, by
its ‘rapidity type’ parameter and by its ‘position type’ parameter. In the solution below the
following parameters are used: the soliton of the first (second) pair moves with velocity u(v),
its rapidity type parameter is denoted by k ( p) and its position type parameter by a1 (b1);
for the antisoliton of the first (second) pair the corresponding quantities are −u (−v),
1/k (1/p), and a2 (b2) respectively. (These quantities give a redundant characterization
as u and k—alternatively v and p—can be expressed in terms of the θ1 and θ2 rapidities of the
first and second solitons: u = tanh θ1, k = eθ1 ; v = tanh θ2, p = eθ2). Then, using also the

γ = 1√
1 − u2

γ̃ = 1√
1 − v2

quantities, in the centre-of-mass system the τ function of the solution may be written as

τ = 1 + e−2γ x e−a1−a2u2 − e−2γ̃ x e−b1−b2u2

− e−γ (x+ut) e−γ̃ (x+vt) e−a1−b1

(
k − p

k + p

)2

+ e−γ (x+ut) e−γ̃ (x−vt) e−a1−b2

(
k − 1

p

k + 1
p

)2

+ e−γ (x−ut) e−γ̃ (x+vt) e−a2−b1

(
1
k

− p

1
k

+ p

)2

− e−γ (x−ut)e−γ̃ (x−vt) e−a2−b2

(
1
k

− 1
p

1
k

+ 1
p

)2

5 For the Neumann boundary condition the pole described by ν0 is at θ = i π
2 , and it corresponds to the emission

of a soliton/antisoliton by the boundary [2] rather than to a bound state. Alternatively one can say that |0〉 becomes
identical to the ground state | 〉, as not only their energies but also the P (θ) and Q(θ) reflection factors on them
become identical [17].
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+ e−2γ x e−2γ̃ x e−a1−a2−b1−b2u2v2

(
k − p

k + p

)2
(

k − 1
p

k + 1
p

)2 ( 1
k

− p

1
k

+ p

)2 ( 1
k

− 1
p

1
k

+ 1
p

)2

+ i


e−γ (x+ut) e−a1 − e−γ (x−ut) e−a2 + e−γ̃ (x+vt) e−b1 − e−γ̃ (x−vt) e−b2

+ e−2γ x e−γ̃ (x+vt) e−a1−a2−b1u2

(
k − p

k + p

)2
(

1
k

− p

1
k

+ p

)2

− e−2γ x e−γ̃ (x−vt) e−a1−a2−b2u2

(
k − 1

p

k + 1
p

)2 ( 1
k

− 1
p

1
k

+ 1
p

)2

+ e−2γ̃ x e−γ (x+ut) e−a1−b1−b2v2

(
k − p

k + p

)2
(

k − 1
p

k + 1
p

)2

− e−2γ̃ x e−γ (x−ut) e−a2−b1−b2v2

(
1
k

− p

1
k

+ p

)2 ( 1
k

− 1
p

1
k

+ 1
p

)2

 .

(Here we use dimensionless x and t coordinates: x → mx, t → mt , thus the true time delay
is obtained from the dimensionless one presented below by dividing it by m.) Analysing the
t → ∓∞ limits of the solution and requiring that it should correspond to the sum of two
non-interacting soliton/antisoliton pairs determine the ai, bi (i = 1, 2) parameters in terms of
the initial (t = t0) soliton/antisoliton positions

(
x

is,s
0

)
as well as the time delays: from the

t → −∞ limit it is found

a1 = −γ
(
x1s

0 + ut0
)

a2 = −γ
(
x1s

0 − ut0
)

+ 2 ln u + ln

(
1
k

− p

1
k

+ p

)2

+ ln

( 1
k

− 1
p

1
k

+ 1
p

)2

b1 = −γ̃
(
x2s

0 + vt0
)

+ ln

(
k − p

k + p

)2

b2 = −γ̃
(
x2s

0 − vt0
)

+ 2 ln v + ln

(
k − 1

p

k + 1
p

)2

(4.3)

while the t → ∞ limit yields the time delays of the two pairs

�t1 =
2 ln u + ln

( 1
k
−p

1
k

+p

)2
+ ln

(
k−p

k+p

)2

γ u

�t2 =
2 ln v + ln

( 1
k
−p

1
k

+p

)2
− ln

(
k−p

k+p

)2

γ̃ v
.

(4.4)

(The asymmetry in equations (4.3) and (4.4) stems from assuming u > v.) These expressions
for the time delay have a simple interpretation: they give the sum of the time delays suffered
in the various collisions. Indeed the first terms on the right-hand sides of equation (4.4) give
the time delays of the solitons from the scattering on their own partners, while a simple Lorentz
transformation shows that the second and third terms are nothing but the contributions from
the scattering on the two members of the other pair.

In the Neumann boundary problem the breather should be located at x = 0 and the
soliton/antisoliton pair (representing the scattering soliton) should also come together at
the boundary. To accomplish this the 4-soliton solution should be expressed in terms of
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the ‘collision place’ and ‘collision time’ of each pair instead of the initial positions. The
collision place of each pair is trivially x∗1 = (

x1s
0 + x1s

0

)/
2, x∗2 = (

x2s
0 + x2s

0

)/
2. Assuming

that the slower moving members of the inner pair collide first, the t∗1, t∗2 collision times can be
obtained from the addition rule of the time delays just shown, and the ai , bi can be expressed
more symmetrically using the following four quantities:

a1 = −γ (x∗1 + ut∗1) + ln u + ln

(
1
k

− p

1
k

+ p

)2

a2 = −γ (x∗1 − ut∗1) + ln u + ln

(1
k

− 1
p

1
k

+ 1
p

)2

b1 = −γ̃ (x∗2 + vt∗2) + ln v + ln

(
k − p

k + p

)2

b2 = −γ̃ (x∗2 − vt∗2) + ln v + ln

(
k − 1

p

k + 1
p

)2

.

(4.5)

Now the parameters of the solution relevant for the Neumann problem are obtained as follows:
assuming we use the second pair to describe the breather we set x∗2 = 0 and continue v to
purely imaginary values v = iw (w real) and use equation (4.5) to express the b parameters;
however the a parameters are to be obtained from equation (4.3) with x1s

0 = −x1s
0 . The reason

behind this is that the first two equations in (4.5) were obtained by assuming that the soliton
scatters on the individual members of the other pair, which is now replaced by the breather.
The time delay of the soliton is independent of these parameters and is obtained from the first
equation in (4.4), which gives a real value in spite of p being a complex number:

p =
√

1 + v

1 − v
=
√

1 + iw

1 − iw
= 1 + iw√

1 + w2
= ei arctan w.

Using this time delay in the integral in the semi-classical expression (4.1) gives

16

β2

∫ tanh θ

0
dv′ ln v′

1 − v′2 +
8

β2

∫ k

0

dy

y

(
ln

(
y − p

y + p

)2

+ ln

(
y−1 − p

y−1 + p

)2
)

. (4.6)

The first integral reproduces what is obtained above for the ground state boundary. In the
second integral the p parameter of the breather is obtained by matching the classical and
quantum expressions of its energy,

M sin
( π

2λ

)
= M√

1 + w2
.

Therefore in the semi-classical limit p = i + π
2λ

; using it in the second integral shows that
it is only an O(λ0) correction to the first one. Thus we verified the matching between
equation (4.1) and the limit of the exact amplitude also in the case of solitons reflecting on an
excited Neumann boundary.

4.2. Ground state boundary with general boundary conditions

Finally we show that comparing the semi-classical limit of the exact soliton/antisoliton
reflection amplitude on the ground state boundary with general boundary conditions and
the semi-classical phase shift obtained from equation (4.1) with the aid of the classical time
delay derived by SSW in [10], one can confirm the UV–IR relation discussed in the previous
section.

The most general reflection factor of the soliton/antisoliton multiplet (|s, s̄〉) on the ground
state boundary, satisfying the boundary versions of the Yang–Baxter, unitarity and crossing
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equations, was found by Ghoshal and Zamolodchikov [2] as

R(η, ϑ, θ) =
(

P +(η, ϑ, θ) Q(η, ϑ, θ)

Q(η, ϑ, θ) P−(η, ϑ, θ)

)

=
(

P +
0 (η, ϑ, θ) Q0(θ)

Q0(θ) P−
0 (η, ϑ, θ)

)
R0(θ)

σ (η, θ)

cos(η)

σ (iϑ, θ)

cosh(ϑ)

P±
0 (η, ϑ, θ) = cosh(λθ) cos(η) cosh(ϑ) ± i sinh(λθ) sin(η) sinh(ϑ)

Q0(θ) = i sinh(λθ) cosh(λθ).

In [10] useful integral representations are given for R0(θ) and σ(x, θ); for R0(θ) we use this,
while—by going back to the infinite product representation of [2, 6]—we replace

σ(x, θ)

cos x
= �(x, θ)

cos(x + iλθ)

with

ln �(x, θ) = i
∫ ∞

0

dy

y

sin
( 2θy

π

)
sinh (y/λ)

sinh
(
y − 2x

πλ
y
)

cosh(y)

as this gives a convergent integral in the entire range 0 � η � π
2 (λ + 1). Expressing η and ϑ

in terms of c and ϑcl as in section 3 and using the integral representations one obtains

R0(θ)�(η, θ)�(iϑ, θ) = eiδ̂ eJ J =
∫ ∞

0

dy

y

sin
( 2yθ

π

)
sin
( 2yϑcl

π
(λ−1 + 1)

)
sinh(y/λ)

. (4.7)

In the semi-classical limit, neglecting the O(λ0) terms in the exponent

eJ →
{

eλϑcl θ > ϑcl

eλθ θ < ϑcl
.

Therefore the three amplitudes,P± and Q, have rather different semi-classical limits depending
on whether the rapidity of the incident particle is bigger or smaller than ϑcl:

lim
λ→∞

P± = e±ic π
2 λ eic π

2 λ eiδ̂ lim
λ→∞

Q = 0 θ < ϑcl

lim
λ→∞

P± = 0 lim
λ→∞

Q = eic π
2 λ eiδ̂ θ > ϑcl.

(4.8)

This behaviour is consistent with the known facts that classically, for Dirichlet boundary
conditions (ϑcl = ∞), solitons reflect as solitons, while for the Neumann boundary condition
(ϑcl = 0), they reflect as antisolitons. Furthermore, the classical solution found by SSW [10]
shows the same critical behaviour as in equation (4.8), so that ϑcl may be identified with one
of the parameters of that paper. To make the correspondence complete one has to compute
the semi-classical limit of iδ̂ as well. Using the aforementioned integral representations, after
some algebra, keeping only the leading terms, one finds

lim
λ→∞

iδ̂ = −iλ
∫ ∞

0

dy

y2
sin

(
2θy

π

)(
tanh

(y

2

)
+

sinh([c − 1]y)

cosh y

+ tanh y − tanh y cos

(
2yϑcl

π

))
= −i(I1 + I2 + I3 + I4).

All integrals Ij are computed by realizing that ∂Ij

∂θ
can be found in [19]. There is a subtlety

with I4 as

∂I4

∂θ
= λ

π
ln

(
tanh

[
θ + ϑcl

2

]
tanh

[ |θ − ϑcl|
2

])
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where |θ − ϑcl| is the modulus of θ − ϑcl. Therefore the θ < ϑcl and the θ > ϑcl domains are
separated by a logarithmic singularity, and this matches nicely with equation (4.8). Finally

iδ̂ = iλ

π

∫ θ

θth

dv ln
tanh2 v tanh2(v/2)

tanh
(

1
2

(
v + i cπ

2

))
tanh

(
1
2

(
v − i cπ

2

))
tanh

[
v+ϑcl

2

]
tanh

[ |v−ϑcl |
2

]
where θth is 0 in the θ < ϑcl domain, while it is ϑcl in the θ > ϑcl one. Now we are in
a position to compare this to the integral of the classical time delay derived in [10]. SSW
used two parameters, ζ and ηSSW (which we denote by χ̂ to avoid confusion), in that paper to
describe the dependence of the time delay on the Lagrangian parameters. These parameters
are related to the Lagrangian parameters of this paper by

2 cosh ζ cos χ̂ = −M0β
2

2m
cos α 2 sinh ζ sin χ̂ = −M0β

2

2m
sin α. (4.9)

Now making the shift χ̂ = π + χ and the identifications

χ → c
π

2
ζ → ϑcl

converts on the one hand the integral of the classical time delay in [10] to δ̂, while on the
other it maps equation (4.9) to our previous UV–IR relations (3.9) and (3.10).6 Thus it is
demonstrated that the UV–IR relation and Mcrit = 4m

β2 in particular are also consistent with the
semi-classical soliton/antisoliton reflections.

5. Conclusions

In this paper two semi-classical issues of boundary sine-Gordon models are investigated to get
a better understanding of the relation between the exact (algebraic) solution of the quantum
theory and the classical Lagrangian.

First the semi-classical corrections to the energy difference of the two lowest energy
static solutions were determined. In this procedure it turned out that one has to renormalize
also the boundary potential in just the same way as the bulk one to obtain a finite result.
Then we showed that comparing the main results of the semi-classical quantization—which
include in addition to the energy difference the semi-classical bound states and the classical
reflection factor of the sine-Gordon field—and the semi-classical limit of the exact solution
one can obtain a relation between the Lagrangian and bootstrap parameters provided we
scale the bootstrap parameters in an appropriate way. After analytic continuation the form
of this relation coincides with what was found by Corrigan and Taormina by semi-classically
quantizing the boundary breathers in sinh-Gordon theory [9]. Since our computation is done in
a sector of sine-Gordon theory, which has no analogue in sinh-Gordon, this is an independent
confirmation of the results in [9]. We also showed that in the semi-classical limit the UV–IR
relation obtained from describing the boundary sine-Gordon model as a bulk and boundary
perturbed conformal field theory [7] coincides with our result.

Finally we analysed the semi-classical soliton reflections building on the ideas and results
put forward by Saleur et al [10]. As a consistency check we showed that the semi-classical
phase shift determined from the classical time delay and the number of bound states agrees
with the semi-classical limit of the exact reflection amplitudes both for the ground state and
for the first excited Neumann boundary. In the latter case we obtained the time delay from
the analytic continuation of a special two soliton–two antisoliton solution of the bulk theory,

6 Note that the ζ → ϑcl identification is the same as the one obtained from comparing the critical behaviour of the
classical solution [10] and the limit of the quantum amplitude mentioned above.
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that we constructed by the τ function method. Then we analysed the semi-classical limit of
soliton/antisoliton reflections on the ground state boundary with general boundary conditions
and confirmed the UV–IR relation connecting the Lagrangian and bootstrap parameters.
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